How Hacker News ranking algorithm worksIn this post I'll try to explain how Hacker News ranking algorithm works and how you can reuse it in your own applications. It's a very simple ranking algorithm and works surprising well when you want to highlight hot or new stuff. Digging into news.arc codeHacker News is implemented in Arc, a Lisp dialect coded by Paul Graham. Hacker News is opensource and the code can be found at arclanguage.org. Digging through the news.arc code you can find the ranking algorithm which looks like this: ; Votes divided by the age in hours to the gravityth power. ; Would be interesting to scale gravity in a slider. (= gravity* 1.8 timebase* 120 frontthreshold* 1 nourlfactor* .4 lightweightfactor* .3 ) (def frontpagerank (s (o scorefn realscore) (o gravity gravity*)) (* (/ (let base ( (scorefn s) 1) (if (> base 0) (expt base .8) base)) (expt (/ (+ (itemage s) timebase*) 60) gravity)) (if (no (in s!type 'story 'poll)) 1 (blank s!url) nourlfactor* (lightweight s) (min lightweightfactor* (controfactor s)) (controfactor s)))) In essence the ranking performed by Hacker News looks like this: Score = (P1) / (T+2)^G where, P = points of an item (and 1 is to negate submitters vote) T = time since submission (in hours) G = Gravity, defaults to 1.8 in news.arc As you see the algorithm is rather trivial to implement. In the upcoming section we'll see how the algorithm behaves. Effects of gravity (G) and time (T)Gravity and time have a significant impact on the score of an item. Generally these things hold true:
To see this visually we can plot the algorithm to Wolfram Alpha. How score is behaving over time
As you can see the score decreases a lot as time goes by, for example a 24 hour old item will have a very low score regardless of how many votes it got. plot( (30  1) / (t + 2)^1.8, (60  1) / (t + 2)^1.8, (200  1) / (t + 2)^1.8 ) where t=0..24 How gravity parameter behaves
As you can see by the graph the score decreases a lot faster the larger the gravity is. plot( (p  1) / (t + 2)^1.8, (p  1) / (t + 2)^0.5, (p  1) / (t + 2)^2.0 ) where t=0..24, p=10 Python implementationAs already stated it's rather simple to implementing the score function: def calculate_score(votes, item_hour_age, gravity=1.8):
return (votes  1) / pow((item_hour_age+2), gravity)
The most crucial aspect is understanding how the algorithm behaves and how you can customize it for your application and I hope I have contributed that knowledge :) Happy hacking!
Edit:
Edit: (= gravity* 1.8 timebase* 120 frontthreshold* 1 nourlfactor* .4 lightweightfactor* .17 gagfactor* .1) (def frontpagerank (s (o scorefn realscore) (o gravity gravity*)) (* (/ (let base ( (scorefn s) 1) (if (> base 0) (expt base .8) base)) (expt (/ (+ (itemage s) timebase*) 60) gravity)) (if (no (in s!type 'story 'poll)) .8 (blank s!url) nourlfactor* (mem 'bury s!keys) .001 (* (controfactor s) (if (mem 'gag s!keys) gagfactor* (lightweight s) lightweightfactor* 1))))) 
